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Abstract We propose some strategies that can be shown to improve the performance
of the radial basis function (RBF) method by Gutmann [J. Global optim. 19(3),
201–227 (2001a)] (Gutmann-RBF) and the RBF method by Regis and Shoemaker
[J. Global optim. 31, 153–171 (2005)] (CORS–RBF) on some test problems when
they are initialized by symmetric Latin hypercube designs (SLHDs). Both meth-
ods are designed for the global optimization of computationally expensive functions
with multiple local optima. We demonstrate how the original implementation of
Gutmann-RBF can sometimes converge slowly to the global minimum on some test
problems because of its failure to do local search. We then propose Controlled Gut-
mann-RBF (CG-RBF), which is a modification of Gutmann-RBF where the function
evaluation point in each iteration is restricted to a subregion of the domain cen-
tered around a global minimizer of the current RBF model. By varying the size of
this subregion in different iterations, we ensure a better balance between local and
global search. Moreover, we propose a complete restart strategy for CG-RBF and
CORS-RBF whenever the algorithm fails to make any substantial progress after some
threshold number of consecutive iterations. Computational experiments on the seven
Dixon and Szegö [Towards Global optimization, pp. 1–13. North-Holland, Amster-
dam (1978)] test problems and on nine Schoen [J. Global optim. 3, 133–137 (1993)]
test problems indicate that the proposed strategies yield significantly better perfor-
mance on some problems. The results also indicate that, for some fixed setting of the
restart parameters, the two modified RBF algorithms, namely CG-RBF-Restart and
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CORS-RBF-Restart, are comparable on the test problems considered. Finally, we
examine the sensitivity of CG-RBF-Restart and CORS-RBF-Restart to the restart
parameters.

Keywords Global optimization · Expensive function · Function approximation ·
Response surface · Surrogate model · Radial basis function

1 Introduction

In this paper, we propose strategies for improving the performance of two radial
basis function (RBF) algorithms for finding the global optimum of computationally
expensive functions. Given a compact subset D of R

d and a deterministic continuous
function f : D → R, the global optimization problem (GOP) is to find x∗ ∈ D such that
f (x∗) = infx∈D f (x). A solution x∗ is called a global minimum point of f over D. Note
that the compactness of D and the continuity of f over D guarantees the existence of
a global minimum point. An extensive treatment of GOP can be found in Horst et al.
(2000) and Torn and Zilinskas (1989).

Our focus is on methods for solving GOP when f is computationally expensive
to evaluate and its derivatives are not available. These GOPs are important because
expensive black box functions can be found in many real-world scientific and engi-
neering applications. We are particularly interested in global optimization methods
that utilize function approximation models (also called response surface models or sur-
rogate models) for the expensive function. Examples of these are the RBF method by
Gutmann (2001a) (Gutmann-RBF), the Constrained Optimization using Response
Surfaces (CORS) method by Regis and Shoemaker (2005), and the kriging-based
Efficient Global Optimization (EGO) method by Jones et al. (1998).

In the literature, there are also local optimization methods that utilize function
approximation models. These include the optimization framework developed by Ser-
afini (1998) and by Booker et al. (1999) that combines pattern search algorithms and
surrogate models. Other examples are the derivative-free trust region methods by
Conn et al. (1997), Powell (2000, 2002) and Marazzi and Nocedal (2002). Each of
these methods can be easily converted to a global optimization method by combining
it with a global search strategy such as multistart.

This paper has four objectives. First, we estimate the average case performance of
Gutmann-RBF (Gutmann 2001a) and CORS-RBF (Regis and Shoemaker 2005) on
some test problems when they are initialized by symmetric Latin hypercube designs
(SLHDs) (Ye et al. 2000). Previous work on these RBF methods (Gutmann 2001a;
Regis and Shoemaker 2005) reported the performance of these algorithms when they
are initialized by the corners of the hypercube domains of the test problems. The
reason for using an SLHD instead of corner points is that it has excellent space-filling
properties (Ye et al. 2000), and more importantly, its size can be specified by the
user independent of the problem dimension. In contrast, the number of corner points
grows exponentially with the problem dimension, making it infeasible for higher
dimensional problems. The results indicate that for some test problems, there is a
significant amount of variability in the number of function evaluations required to get
within 1% of the optimal value when using randomly generated SLHDs. For either
RBF method, there are many combinations of test problem and SLHD for which the
algorithm did not even get close to the global optimum value after a large number of
function evaluations.
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This brings us to the second main objective, which is to understand why slow con-
vergence occurs and to propose strategies for dealing with these problems in RBF
methods. We demonstrate how the original implementation of Gutmann-RBF can
sometimes fail to achieve a balance between local and global search. We then pro-
pose Controlled Gutmann-RBF (CG-RBF), which is a modification of Gutmann-RBF
where the global optimization subproblem that generates the iterates for Gutmann-
RBF is restricted to a subregion of the domain centered around a global minimizer
of the RBF model. By varying the size of this subregion in different iterations, we
ensure a better balance between local and global search. In addition, we propose a
complete restart strategy (i.e. start completely from scratch using a new SLHD) for
either CG-RBF or CORS-RBF whenever the algorithm is not making any substantial
progress after some threshold number of consecutive function evaluations. We shall
demonstrate that the proposed strategies will result in better performance for these
RBF methods on some test problems.

Third, we perform a statistical comparison of the two modified RBF algorithms,
namely CG-RBF-Restart and CORS-RBF-Restart, on the seven Dixon and Szegö
(1978) test problems and on nine Schoen (1993) test problems. The results indicate
that, for some fixed setting of the restart parameters, these two modified RBF algo-
rithms are comparable on the test problems considered. Finally, we examine the
sensitivity of CG-RBF-Restart and CORS-RBF-Restart to the restart parameters.

2 Radial basis function interpolation model

The following RBF interpolation model was used as the basis of the RBF methods by
Gutmann (2001a) and Regis and Shoemaker (2005). This RBF model was extensively
studied by Powell (1992, 1999) and Buhmann (2003).

Given n distinct points x1, . . . , xn ∈ R
d where the function values f (x1), . . . , f (xn)

are known, we use an interpolant of the form

sn(x) =
n∑

i=1

λiφ(‖x − xi‖) + p(x), x ∈ R
d, (1)

where ‖ · ‖ is the Euclidean norm, λi ∈ R for i = 1, . . . , n, p ∈ �d
m (the linear space of

polynomials in d variables of degree less than or equal to m), and φ is a real-valued
function that can take many forms. In this investigation, we used φ(r) = r2 log r, r > 0
and φ(0) = 0 (thin plate spline). However, other forms of φ include: φ(r) = r3 (cubic),
φ(r) = √

r2 + γ 2 (multiquadric), and φ(r) = e−γ r2
(Gaussian), where r ≥ 0 and γ is a

positive constant.
Select a particular φ. Define the matrix � ∈ R

n×n by: �ij := φ(‖xi − xj‖), i, j =
1, . . . , n. Moreover, define mφ to be −1 if φ is Gaussian, 0 if φ is a multiquadric, and
1 if φ is cubic or the thin plate spline. Let m ≥ mφ and let m̂ be the dimension of the
linear space �d

m. (Note that m̂ = (m+d
d

)
.) Also, let p1, . . . , pm̂ be a basis of �d

m, and
define the matrix P ∈ R

n×m̂ as follows: Pij := pj(xi), i = 1, . . . , n; j = 1, . . . , m̂. Here,
the RBF that interpolates the points (x1, f (x1)), . . . , (xn, f (xn)) is obtained by solving
the system

(
� P
PT 0

)(
λ

c

)
=

(
F

0m̂

)
, (2)
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where F = (f (x1), . . . , f (xn))T , λ = (λ1, . . . , λn)T ∈ R
n and c = (c1, . . . , cm̂)T ∈ R

m̂.
It can be shown that the coefficient matrix in (2) is invertible if and only if the matrix

P defined above has full column rank (Powell 1992). Hence, a necessary condition for
the invertibility of the coefficient matrix is that n ≥ m̂. Moreover, if the coefficient
matrix in (2) is invertible, then it will remain invertible with the addition of new data
points that are distinct from the previous ones.

3 Radial basis function methods

This paper focuses on improving the performance of the RBF method by Gutmann
(2001a) and the RBF method by Regis and Shoemaker (2005). This section describes
these two methods in enough detail to explain how and why the suggested improve-
ments affect the performance of each method.

3.1 RBF method by Gutmann

The RBF method by Gutmann (2001a) was based on the following general iterative
technique by Jones (1996). Let x1, . . . , xn be the previously evaluated (or sampled)
points in D and assume that, we have an estimate f ∗

n of the global minimum value
of the expensive function f in the current iteration. We refer to f ∗

n as a target value.
Jones (1996) proposed the idea of sampling where it is “most reasonable” to imag-
ine that the function has a global minimum point assuming that its global minimum
value is, in fact, f ∗

n . More precisely, for each y �∈ {x1, . . . , xn}, assume that there
is a unique function sy

n, belonging to some linear space of functions, that interpo-
lates the data points (x1, f (x1)), . . . , (xn, f (xn)) and the additional data point (y, f ∗

n ).
Jones (1996) proposed that the next evaluation point xn+1 be chosen to be the point
y ∈ D such that sy

n is “most reasonable”. Figure 1 shows four possible locations of
the global minimum point (denoted by a diamond symbol). In each case, we con-
structed a thin plate spline RBF model that interpolates all previously evaluated data
points and the assumed global minimum point. The idea is that the most likely loca-
tion of the global minimum point is the one that yields the “most reasonable” or
“least complicated” RBF interpolant, which in this case would be the bottom right
subfigure.

Gutmann (2001a) interpreted “reasonable” to mean “less bumpy” and discovered
that there is a natural measure of bumpiness of the RBF interpolant in (1) given by
the semi-norm

σ(sn) = 〈sn, sn〉 := (−1)mφ+1
n∑

i=1

λisn(xi).

This resulted in the development of an RBF method for global optimization, which
we shall refer to as Gutmann-RBF.

Next, we discuss the global minimization of the bumpiness function Bn(y) := σ(sy
n)

in the case of RBFs. We recall the notation in Sect. 2. Let s∗
n denote the global minimum

value of the current RBF model sn(x) over D, i.e. s∗
n := infx∈D sn(x). Moreover, for each

y ∈ D, define un(y) := (φ(‖y−x1‖), . . . , φ(‖y−xn‖))T and π(y) := (p1(y), . . . , pm̂(y))T .
Gutmann (2001b) showed that, if the target value f ∗

n < s∗
n, then the global minimiza-

tion of Bn(y) over all y ∈ D is equivalent to the global maximization of
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Fig. 1 The four subfigures represent possible scenarios for the location of the global minimum point,
which is represented by the diamond symbol. The solid dots are previously evaluated points and the
dotted line represents the guess of the global minimum value (i.e. target value f∗

n ) for the current iter-
ation. The dashed curve is the thin plate spline RBF model that interpolates the previously evaluated
points and the assumed global minimum point. Jones (1996) proposed the idea of sampling where it is
“most reasonable” to imagine that the function has a global minimum, i.e. select the candidate global
minimum point that corresponds to the “least complicated” RBF model

hn(y) := (−1)mφ+1

[sn(y) − f ∗
n ]2

×
[
φ(0) − (un(y)T π(y)T)

(
� P
PT 0

)−1 (
un(y)

π(y)

)]
, y ∈ D, (3)

where mφ and sn(y) are defined as in Sect. 2. However, if f ∗
n = s∗

n, then the global
minimum of Bn(y) over D occurs at any global minimizer of sn(x) over D (Gutmann
2001a). Hence, we cannot set f ∗

n = s∗
n if our estimated global minimizer of sn(x) over

D coincides with or is too close to a previously evaluated point.
The target values f ∗

n are selected in the interval [−∞, s∗
n] and are set by performing

cycles of N +1 iterations, where each cycle starts with a low target value and ends with
a high target value equal or close to s∗

n. We refer to N as the cycle length. Gutmann
(2001a) noted that the low target values correspond to global search while the high
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target values correspond to local search. In the linear, cubic and thin plate spline cases,
Gutmann (2001a) showed that, by choosing target values in a particular manner,
convergence to the global minimum is guaranteed for any continuous function defined
over a compact set.

In this investigation, we adopt the procedure used by Gutmann (2001a) and by
Björkman and Holmström (2000) in setting the target values. First, we set the cycle
length to N = 5. Let α be a permutation of {1, . . . , n} such that f (xα(1)) ≤ · · · ≤ f (xα(n)).
Also, let n0 be the number of initial evaluation points (i.e. number of points in the
space-filling experimental design). For n ≥ n0, set

f ∗
n = s∗

n − Wn · (
f (xα(kn)) − s∗

n
)

, (4)

where

Wn =
[

mod(N − (n − n0), N + 1)

N

]2

and kn =
{

n, if mod(n − n0, N + 1) = 0,
kn−1 − �(n − n0)/N , otherwise.

When Wn = 0, we have f ∗
n = s∗

n. However, as noted earlier, this choice is only valid
if there is a global minimizer of sn(x) over D that is not too close to a previously
evaluated point. Otherwise, we need to reset f ∗

n to a value slightly below s∗
n.

When N = 5, note that Wn cycles through the values 1, (4/5)2, (3/5)2, (2/5)2, (1/5)2,
0. The purpose of decreasing the values of Wn within a cycle is to produce target val-
ues that progressively get closer to s∗

n. Moreover, the above fractions are squared
to put more emphasis on local search. Multiplying Wn by (f (xα(kn)) − s∗

n) makes
the desired improvement proportional to the scale of the function. Furthermore,
when n is at the beginning of a cycle (i.e. when mod(n − n0, N + 1) = 0), we have
f (xα(kn)) = max1 ≤ i ≤ kn f (xα(i)) = max1 ≤ i ≤ n f (xi) in Eq. 4. However, as n increases
in the cycle, more and more points with high function values are excluded in the
calculation of f (xα(kn)) = max1 ≤ i≤ kn f (xα(i)). The purpose of excluding high function
values is to control the effect of unusually large function values in the calculation of
f ∗
n . This procedure for setting the target values is somewhat heuristic but it seems to

work well in practice.
Gutmann (2001b) noted that sn, hn ∈ C1(Rd) in the thin plate spline case, sn, hn ∈

C2(Rd) in the cubic case, and sn, hn ∈ C∞(Rd) in the multiquadric and Gaussian cases.
These properties allow us to use multistart gradient-based local optimization methods
to find the global minimum of sn over D (needed in setting the target value f ∗

n ) and the
global maximum of hn over D. However, Björkman and Holmström (2000) found that
maximizing hn(y) could lead to numerical difficulties. Hence, we adopted their proce-
dure of minimizing − log(hn(y)) instead when selecting the next evaluation point xn+1.
Moreover, we used the matrix factorizations described in Powell (1996) and Björkman
and Holmström (2000) to obtain an efficient implementation of Gutmann-RBF.

3.2 RBF method by Regis and Shoemaker

As before, let x1, . . . , xn ∈ D be the previously evaluated points. Define 
n :=
maxx∈D min1≤j≤n ‖x−xj‖ to be the maximin distance in D relative to x1, . . . , xn. Clearly,
the distance between any x ∈ D and any previously evaluated point is at most 
n.
In the CORS-RBF method (Regis and Shoemaker 2005), the next evaluation point



J Glob Optim (2007) 37:113–135 119

xn+1 is chosen to be a point that solves the following global optimization
subproblem:

Minimize { sn(x) : x ∈ D, ‖x − xj‖ ≥ βn
n, j = 1, . . . , n}, (5)

where 
n is given above and 0 ≤ βn ≤ 1 is a parameter to be set by the user. That
is, the next evaluation point is chosen to be the point y ∈ D that minimizes the
RBF model subject to the constraints that y be of distance at least βn
n from each
previously evaluated point. We refer to βn as a distance factor and we shall refer to
the constrained optimization problem (5) as the CORS–RBF auxiliary optimization
subproblem. If lim supn→∞ βn > 0, then CORS-RBF converges to the global mini-
mum of an arbitrary continuous function defined over the compact set D (Regis and
Shoemaker 2005).

To balance global and local search in CORS-RBF, we perform cycles of N + 1 iter-
ations, where each cycle employs a range of values for the distance factor βn, starting
with a high value close to 1 (global search) and ending with a value of 0 (local search).
More precisely, if n0 is the number of initial evaluation points, we have βn = βn+N+1
for all n ≥ n0 and 1 ≥ βn0 ≥ βn0+1 ≥ · · · ≥ βn0+N = 0. We refer to N as the cycle
length and we refer to the sequence 〈βn0 , βn0+1, . . . , βn0+N = 0〉 as the search pattern.
When βn = 0 and our estimated global minimizer of sn(x) over D is too close to a
previously evaluated point, we simply reset βn to some small positive value.

4 Improved local search for the RBF method by Gutmann

4.1 Local search in Gutmann-RBF

In the context, of response surface methods for global optimization, it would be con-
venient to define local and global search loosely as follows: a response surface method
is said to perform local search in the current iteration if the selected evaluation point
is close to a global minimizer of the current response surface model. On the other
hand, the algorithm is said to perform global search if the selected evaluation point is
far from the previously evaluated points.

Recall from Sect. 3.1 that when Wn = 0 (or equivalently, when f ∗
n = s∗

n :=
infx∈D sn(x)), then the next iterate xn+1 will be a global minimizer of sn(x) that is
not a previously evaluated point. Clearly, the algorithm performs local search when
Wn = 0 and there is a global minimizer of sn(x) that is not in {x1, . . . , xn}. Moreover,
Gutmann (2001a) noted that when Wn > 0 is small (or equivalently, when f ∗

n is close
to s∗

n but strictly less than s∗
n), then the algorithm is also expected to perform local

search. A more precise statement concerning the connection between local search
and high target values close to s∗

n is given by the following theorem.

Theorem 1 Suppose D is a compact set in R
d. Let �(sn, D) be the set of global min-

imizers of sn in D and let (hn, D) be the set of global maximizers of hn in D. Let
�̃n := �(sn, D) \ {x1, . . . , xn} and assume that �̃n �= ∅. Then ∀ε > 0, ∃δn > 0 with the
following property:

0 < s∗
n − f ∗

n < δn �⇒ (hn, D) ⊆
⎛

⎝
⋃

x∗∈�̃n

B(x∗, ε)

⎞

⎠
⋂

D. (6)
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Proof Fix ε > 0. If
⋃

x∗∈�̃n
B(x∗, ε) ⊇ D, then any choice of δn > 0 will work.

Suppose D\(
⋃

x∗∈�̃n
B(x∗, ε)) �= ∅. We recall the notation in Sect. 3.1. Moreover, let

Vn(y) := (−1)mφ+1

[
φ(0) − (un(y)T π(y)T)

(
� P
PT 0

)−1 (
un(y)

π(y)

)]
.

If f ∗
n < s∗

n, then hn(y) = Vn(y)/[sn(y) − f ∗
n ]2 for all y ∈ D. Gutmann (2001b) showed

that Vn(y) is continuous on D, Vn(xi) = 0 for all i = 1, . . . , n, and Vn(y) > 0 for all
y ∈ D \ {x1, . . . , xn}. Since D is compact, ∃Kn > 0 such that 0 ≤ Vn(y) ≤ Kn ∀y ∈ D.

Next, consider the function ξn(y) := sn(y) − s∗
n, y ∈ D. By definition, ξn(y) ≥ 0,

∀y ∈ D. Moreover, ξn(y) is continuous and strictly positive over the compact set
D\(

⋃
x∗∈�̃n

B(x∗, ε)). Hence, ∃Hn > 0 such that ξn(y) ≥ Hn > 0, ∀y ∈ D \ (
⋃

x∗∈�̃n

B(x∗, ε)). Fix x∗ ∈ �̃n and let δn = Hn
√

Vn(x∗)/(
√

ηKn − √
Vn(x∗)), where η > 1

is some constant. Since x∗ �∈ {x1, . . . , xn}, it follows that Vn(x∗) > 0. Moreover,
Vn(x∗) < ηKn. Hence, δn > 0. We wish to show that Property (6) holds for this choice
of δn.

We argue by contradiction. Suppose that for some f ∗
n ∈ (s∗

n−δn, s∗
n), ∃y∗ ∈ (hn, D)\

(
⋃

x∗∈�̃n
B(x∗, ε)). Then

Vn(y∗)
[sn(y∗) − f ∗

n ]2 = hn(y∗) ≥ hn(x∗) = Vn(x∗)
[sn(x∗) − f ∗

n ]2 . (7)

Let s∗
n − f ∗

n = θn. Note that sn(y∗) − f ∗
n = sn(y∗) − (s∗

n − θn) = θn + ξn(y∗). Hence, (7)
becomes

Vn(y∗)
[θn + ξn(y∗)]2 ≥ Vn(x∗)

θ2
n

. (8)

Note that y∗ �∈ ⋃
x∗∈�̃n

B(x∗, ε), and so, ξn(y∗) ≥ Hn. Moreover, 0 < θn < δn. Hence,
(8) implies that

Vn(y∗) ≥ Vn(x∗)
[

1 + ξn(y∗)
θn

]2

≥ Vn(x∗)
[

1 + Hn

δn

]2

= Vn(x∗)
[

1 +
√

ηKn − √
Vn(x∗)√

Vn(x∗)

]2

= ηKn,

which is a contradiction since Vn(y∗) ≤ Kn. Thus, Property (6) holds for the
chosen δn. ��

Theorem 1 assumes that there is a global minimizer of sn(x) in D that is not a
previously evaluated point. Given an ε > 0, Theorem 1 guarantees the existence
of a δn > 0 such that the next iterate xn+1 is within ε-radius of one such minimizer of
sn(x) whenever f ∗

n is in the open interval (s∗
n − δn, s∗

n). However, a particular value of
δn that guarantees this condition is hard to calculate in practice. As will be seen in an
example below, a small value of Wn (which gives a value of f ∗

n that is relatively close
to s∗

n) could result in an iterate xn+1 that is as far away as possible from the global
minimizer of sn(x).
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4.2 A convergence problem in Gutmann-RBF

In our computational experiments, we observed a convergence problem in Gutmann-
RBF on the Shekel problems from the Dixon and Szegö (1978) testbed. In particular,
when Gutmann-RBF was applied to these problems, there were many instances where
the best solution found is already in the basin of the global minimizer of the test prob-
lem, and yet, the algorithm takes a long time to converge to the global minimum
point. Our investigation suggests that the slow convergence was due to the failure
of local search. We now provide some examples that demonstrate how local search
could fail in Gutmann-RBF. For simplicity in the discussion below, assume that sn(x)

has a unique global minimizer x∗
n in D in every iteration. Note that sn(x) could still

have multiple local minima on D.
In Fig. 2, we applied Gutmann-RBF to the function

f (x) = −1
(x − 0.15)2 + 0.001

, x ∈ [0, 1].

Here, n = 6 and the dots represent the previously evaluated data points (0.05, −90.91),
(0.09, −217.39), (0.11, −384.62), (0.19, −384.62), (0.22, −169.49), (0.5, −8.10). Fig. 2a
shows the function (solid curve) and the RBF model sn(x) that interpolates the previ-
ously evaluated points (dashed curve). Observe that x∗

n, the global minimizer of sn(x)

on [0, 1], is not one of the previously evaluated points.
We consider one iteration of Gutmann-RBF with Wn = 0.04, which is one of the

values taken by Wn when N = 5 (see Sect. 3.1). This corresponds to a high target
value of f ∗

n = −498.49 (represented by the dotted line in Fig. 2a), which is relatively
close to s∗

n = −479.63. By doing an exhaustive line search in the interval [0, 1], we will
see that the point y ∈ [0, 1] that yields the minimum bumpiness for the RBF model

Fig. 2 In (a), the solid curve is
the actual function. The dots
are previously evaluated points
and the dashed curve is the
thin plate spline RBF model
that interpolates the previously
evaluated points. The dotted
line represents the target value
f∗
n for the current iteration of

Gutmann-RBF and it is close
to s∗n = sn(x∗

n). In (b), the point
y ∈ [0, 1] that yields the
minimum bumpiness for the
RBF model that interpolates
the previously evaluated data
points and the additional data
point (y, f∗

n ) is y = 1, which is
far from x∗

n
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that interpolates the previously evaluated data points and the additional data point
(y, f ∗

n ) is y = 1. Figure 2b shows the RBF model associated with the point selected for
function evaluation. Note that the candidate point for function evaluation (i.e. y = 1)
is far from the previously evaluated points in [0, 1] and is also far from x∗

n, which is the
global minimizer of sn(x) (shown in Fig. 2a) on [0, 1].

Another situation that can cause the failure of local search in Gutmann-RBF is
when x∗

n (i.e. the global minimizer of sn(x) over D) coincides with one of the previously
evaluated points x1, . . . , xn. This could happen if a function has steep valleys. That is, if
the function value of the current iterate is much lower than those around it (i.e. if we
stumble on a steep valley), then it will often happen that the global minimum of the
updated RBF surface occurs exactly at this especially low point. If x∗

n coincides with a
previously evaluated point, then as we have noted in Sect. 3.1, we cannot set f ∗

n = s∗
n.

Moreover, when f ∗
n < s∗

n, Gutmann (2001b) showed that hn(xi) = 0 for i = 1, . . . , n
and hn(y) > 0 for all y ∈ D\{x1, . . . , xn}. Hence, the new iterate xn+1 will be away from
x∗

n (since this is one of the xi’s) even if we set f ∗
n close to s∗

n. The distance of xn+1 from
x∗

n will depend on the function f . However, an example below shows that xn+1 could
be as far away as possible from x∗

n even if Wn is fairly small (i.e. f ∗
n is fairly close to s∗

n).
In Fig. 3, we have a similar setup as in Fig. 2 except that the global minimizer

x∗
n = 0.135 of sn(x) is now one of the previously evaluated points. Here, the data points

are (0.05, −90.91), (0.135, −816.33), (0.18, −526.32), (0.22, −169.49), (0.5, −8.10).
As before, we consider one iteration of Gutmann-RBF with Wn = 0.04. This cor-

responds to a high target value of f ∗
n = −848.66 (represented by the dotted line in

Fig. 3a), which is relatively close to s∗
n = −816.33. By doing an exhaustive line search

in the interval [0, 1], we will again see that the global minimum value of the bumpi-
ness function Bn(y) (see Sect. 3.1) occurs at y = 1 (see Fig. 3b), which is far from the
previously evaluated points (one of which is x∗

n).

Fig. 3 The setup is similar to
Fig. 2 except that the global
minimizer x∗

n of the RBF
model is now one of the
previously evaluated points.
Note that the point y ∈ [0, 1]
that yields the minimum
bumpiness for the RBF model
that interpolates the previously
evaluated data points and the
additional data point (y, f∗

n ) is
again y = 1, which is far
from x∗

n
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Finally, if x∗
n is too close to a previously evaluated point but not exactly identical

to it, then local search would most likely be ineffective. In this case, Theorem 1 still
holds. However, for every ε > 0, the value of δn that guarantees that xn+1 is within
ε-radius of x∗

n would be very tiny because Vn(x∗
n) (from the proof of Theorem 1) would

be a very small positive number. Now among the values of f ∗
n in a cycle, N are strictly

less than s∗
n and one is exactly equal to s∗

n. Since δn is so tiny, none of the N target
values f ∗

n < s∗
n that we compute are likely to be within distance δn from s∗

n. Hence,
local search will only occur when f ∗

n = s∗
n. In this case, our iterate will be x∗

n, which by
assumption is very close to a previously evaluated point, and so, our local search will
be highly ineffective.

To summarize, we have shown that there is no guarantee that Gutmann-RBF
performs local search when Wn > 0 is small. This is true whether or not the global
minimizer of the RBF model is a previously evaluated point. This results in slow con-
vergence for some functions similar to the one in Figs. 2 and 3. This also provides one
reason for the slow convergence of Gutmann-RBF on the Shekel problems, where
the global minimum is somewhat “steep” just like the function in the example above.
In the next section, we propose a strategy for dealing with this problem.

4.3 Restricted global minimization of the bumpiness function

Effective global optimization requires a balance between local and global search.
Large values of Wn (see Eq. 4 in Sect. 3.1) are intended for global search while small
values of Wn are intended for local search. However, we have noted in Sect. 4.2
that the small values of Wn in Gutmann-RBF do not guarantee local search. To deal
with this problem, we propose a modification to Gutmann-RBF, called Controlled
Gutmann-RBF (CG-RBF), where the global minimization of the bumpiness function
Bn(y) is restricted to a small hyperrectangle centered at a global minimizer of sn(x) in
D whenever Wn is small.

More precisely, we will find the point y ∈ D = [a, b] ⊆ R
d that minimizes Bn(y)

subject to the constraint that y ∈ [x∗
n − ρn(b − a), x∗

n + ρn(b − a)] ∩ D, where x∗
n is a

global minimizer of sn(x) and ρn is a function of the parameter Wn with the following
properties: 0 ≤ ρn ≤ 1, ρn = 0 if Wn = 0, and ρn(Wn) ≤ ρn(W′

n) whenever Wn ≤ W′
n.

Moreover, ρn should be small whenever Wn is small and ρn = 1 whenever Wn is large.
Note that, when ρn = 0, then the iterate will be x∗

n. However, when ρn = 1, we have
[x∗

n − ρn(b − a), x∗
n + ρn(b − a)] ∩ D = D so there is essentially no restriction on the

new iterate.
In this investigation, we will use the following for ρn:

ρn(Wn) =
{

ν
√

Wn, if 0 ≤ Wn ≤ U,
1, otherwise,

where 0 < ν < 1 and U > 0 are parameters to be specified. In the numerical experi-
ments, we will set ν = 1/2 and U = 1/4.

Note that the above strategy for CG-RBF promotes a better balance between local
and global search since it ensures that local search is always performed whenever
Wn is small. In the computational experiments below, we will demonstrate that this
strategy is helpful in alleviating some of the convergence problems of Gutmann-RBF
when it is applied to functions whose characteristics are similar to those of the Shekel
functions and the function shown in Figs. 2 and 3.
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A similar strategy could be implemented in CORS-RBF. However, CORS-RBF
does not exhibit the same convergence problem as Gutmann-RBF so there is hardly
any benefit in doing this.

5 Restart strategy for RBF methods

In our computational experience, there is a significant amount of variability in the
performance (number of function evaluations to get within a specified level of accu-
racy) of RBF methods on some test problems when these RBF methods are initialized
by SLHDs. Depending on the SLHD used, some runs are relatively short while other
runs take a long time (even after the strategy in Sect. 4.3 was implemented on Gut-
mann-RBF). In particular, for all the Shekel test problems, many trials of CG-RBF
and CORS-RBF take a long time but a substantial number of trials are relatively
short. These long trials might be due to the algorithm being unlucky with global
search and spending considerable local search effort on the wrong local minima. That
is, the global searches of these RBF algorithms are unable to locate the basin of the
global minimum and so the local searches do not really help.

To deal with this problem, we propose a complete restart strategy for CG-RBF and
CORS-RBF whenever the algorithm is not making any substantial progress. Here, a
complete restart means that we start the algorithm from scratch using a new SLHD.
However, when we count the number of function evaluations to get a specified level
of accuracy we also count the total number of function evaluations in the previous
runs that we stopped. If a substantial fraction of trials are relatively short and we
happen get an SLHD that will yield a long trial, then restarts should eventually result
in an SLHD that will yield a short run. Restart strategies have proven to be effective
in backtrack procedures for the solution of some difficult satisfiability and constraint
satisfaction problems (Gomes et al. 2000). Hence, it is reasonable to consider such
strategies when applying RBF methods on difficult global optimization problems. We
shall refer to CG-RBF with restart and CORS-RBF with restart as CG-RBF-Restart
and CORS-RBF-Restart, respectively.

To determine the moment when the algorithm will be restarted, we will count the
number of consecutive iterations that did not result in a substantial improvement
in function value. By substantial improvement, we mean that the improvement in
function value should be some percentage Imin of the difference between the lower
quartile (25th percentile) and the minimum of all available function values. Here,
Imin is a parameter that, we will set to 0.5%. If the number of non-improving itera-
tions exceeds some threshold value, then we will restart the algorithm from scratch
using a new SLHD. We will set this threshold value equal to Cmax(N + 1), where
Cmax is a parameter and N is the cycle length. Hence, the threshold number of non-
improving iterations before performing a restart is equivalent to Cmax cycles of the
standard implementation of CG-RBF and CORS-RBF. In this investigation, we will
set Cmax = 5. Since N = 5 in the standard implementation of CG-RBF and CORS-
RBF, this threshold is equal to 30 iterations.
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6 Numerical experiments

6.1 Measuring the performance of RBF methods

In order to assess the significance of our proposed improvements, we need an accurate
measure of performance for the RBF methods. The performance of an RBF method
depends heavily on the number of initial evaluation points and also on how these
points are located in the domain D. Some choices of initial evaluation points will lead
to the global minimum more quickly than others. Hence, an accurate characterization
of performance of an RBF method should be based on some average case performance
over all possible initial evaluation points (i.e. all possible finite nonempty subsets of
the domain such that the resulting P matrix from Sect. 2 has full column rank). Since
it is impossible to compute an average performance over all possible finite subsets
of D, we simply estimate an average performance over some reasonable collection of
initial evaluation points.

In the papers by Gutmann (2001a), Björkman and Holmström (2000), and Regis
and Shoemaker (2005), the RBF methods were all initialized by evaluating the func-
tion at the corners of the hypercube domains of the Dixon–Szegö test functions.
For higher dimensional problems, using the corners is not feasible since the num-
ber of corners grows exponentially as the dimension increases. An alternative is to
use space-filling experimental designs such as Latin hypercubes (McKay et al. 1979)
and orthogonal arrays. Latin hypercubes are particularly convenient since the user can
specify the number of initial evaluation points. Moreover, they also have the desirable
property that the projection of the Latin hypercube design onto any single dimension
is a uniform grid. In this investigation, we will use SLHDs (Ye et al. 2000) as the initial
evaluation points since the symmetry condition improves the space-filling properties
of a Latin hypercube.

Now for a given number of initial evaluation points, say �, there are many symmetric
Latin hypercube designs in D with � points. Hence, we could measure the performance
of an RBF method initialized by an SLHD of size � on a particular function by con-
sidering an average performance of the RBF method on the given function over all
possible SLHDs of size �. We estimate this average performance by randomly gen-
erating several SLHDs of size � in D and computing the average number of function
evaluations it takes an RBF algorithm to get to a specified level of accuracy.

The results obtained by Gutmann (2001a), Björkman and Holmström (2000) and
Regis and Shoemaker (2005) when using the corners of the hypercube domain as
the initial evaluation points were excellent. However, in the computational experi-
ments below, the performance of these RBF methods on the Dixon-Szegö functions
when using SLHDs will exhibit significant variability and that the estimated average
case performance when using SLHDs are generally worse compared to the perfor-
mance when using only the hypercube corners on the Dixon and Szegö (1978) test
functions. We used SLHDs because they are practical for both low dimensional and
high-dimensional problems. Moreover, for low dimensional problems, one can always
augment an SLHD with the corner points.

6.2 Test problems

Since the RBF methods by Gutmann (2001a) and Regis and Shoemaker (2005) were
both tested on the Dixon and Szegö (1978) functions, we will also test our proposed
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Table 1 The Dixon-Szegö test functions (Dixon and Szegö 1978)

Test function Dim Domain No. of local min Global min value

Branin 2 [−5, 10] × [0, 15] 3 0.398
Goldstein–Price 2 [−2, 2]2 4 3
Hartman3 3 [0, 1]3 4 −3.86
Shekel5 4 [0, 10]4 5 −10.1532
Shekel7 4 [0, 10]4 7 −10.4029
Shekel10 4 [0, 10]4 10 −10.5364
Hartman6 6 [0, 1]6 4 −3.32

strategies on these problems. The properties of the Dixon and Szegö problems are
summarized in Table 1. In the Branin test problem, all local minima are also global
minima. For the other six problems, there is only one global minimum point.

In addition, we also created Schoen (1993) test problems of the form:

f (x) =
∑k

i=1 fi
∏

j �=i ‖x − zj‖2

∑k
i=1

∏
j �=i ‖x − zj‖2

, x ∈ [0, 1]d,

where k ≥ 1, zj ∈ [0, 1]d ∀j = 1, . . . , k, and fi ∈ R ∀i = 1, . . . , k. These functions have
the following properties (Schoen 1993): (1) f (zi) = fi ∀i = 1, . . . , k; (2) min1≤i≤k fi ≤
f (x) ≤ max1≤i≤k fi ∀x ∈ [0, 1]d; and (3) limx→zi ∇f (x) = 0. For all the Schoen
functions that will be created below, the points z1, . . . , zk will always be generated
uniformly at random throughout D = [0, 1]d.

First, we generated Schoen test functions of the above form with k = 10 for dimen-
sions d = 3, 4, 5 where the function values f1, . . . , fk were generated uniformly at
random in [0, 100]. We shall refer to these test functions as Schoen3, Schoen4 and
Schoen5.

To demonstrate the importance of the proposed strategies, we constructed Schoen
(1993) functions with characteristics that are similar to those of the Shekel problems
and the function shown in Figs. 2 and 3.

More precisely, to highlight the importance of the CG-RBF strategy, we created
Schoen functions with k = 100 for dimensions d = 3, 4, 5 where 1 of the function
values f1, . . . , fk was generated uniformly at random in [−1000, −900] while the other
99 function values were generated uniformly at random in [900, 1000]. Hence, each
of these test problems has exactly one “steep” local minimum point, which is also the
global minimum point. We shall refer to these test functions as Schoen3X, Schoen4X,
and Schoen5X, respectively.

Finally, to show the importance of the restart strategy, we also created Schoen
test functions with k = 100 for dimensions d = 3, 4, 5 where 3 of the function val-
ues f1, . . . , fk were generated uniformly at random in [−1000, −500] while the other
97 function values were generated uniformly at random in [900, 1000]. Hence, each
of these test problems has exactly three “steep” local minima, one of which is the
global minimum. We shall refer to these test functions as Schoen3Y, Schoen4Y, and
Schoen5Y, respectively.

6.3 Experimental setup

To determine whether the proposed strategies are helpful, we will run Gutmann-RBF,
CG-RBF and CORS-RBF with or without restart. Our CORS-RBF algorithms will
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use a cycle of length 5 with a search pattern of 〈0.9, 0.75, 0.25, 0.05, 0.03, 0〉. This choice
of parameters was used in one of the implementations of CORS-RBF in Regis and
Shoemaker (2005).

Each algorithm will be run 30 times on each test problem, where each trial uses a
different SLHD of size (d+1)(d+2)/2 (d is the dimension). However, for comparison
purposes, the same SLHD is used by the different RBF algorithms in a given trial. We
chose SLHDs of size (d + 1)(d + 2)/2 since this is the minimum number of data points
needed to fit a quadratic model, which is among the simplest nonlinear surfaces in R

d.
For each test problem, we will record the average number of function evalua-

tions an algorithm takes to get a solution with relative error <1%. If f ∗ is the global
minimum value of a function f and fbest is the best value obtained by an algorithm,
then the relative error of the algorithm is given by |fbest − f ∗|/|f ∗| provided that f ∗ �= 0.

All RBF algorithms in this investigation adopted the strategy used by Gutmann
(2001a), Björkman and Holmström (2000), and Regis and Shoemaker (2005) of replac-
ing large function values by the median of all available function values whenever these
values exceed the median. This is helpful in preventing oscillations in the RBF inter-
polant that are due to large differences in function values.

All numerical computations were performed in Matlab 7.0.4 on a 3.2 GHz Pentium
4 desktop. The solution of the global optimization subproblems in all RBF algo-
rithms were carried out using a multistart implementation of the gradient-based solver
FMINCON from the Matlab Optimization Toolbox (The Mathworks 2004), where
derivatives are supplied for all the objective (i.e. − log(hn(y)) and sn(x)) and con-
straint functions of the subproblems. In particular, for the global minimization of
sn(x) and − log(hn(y)) over D, we used the multistart approach known as multi level
single linkage (Rinnooy Kan and Timmer 1987). For the global minimization of sn(x)

subject to the distance constraints, we used a simple multistart approach that involves
generating a sample from the feasible region, selecting some fraction of the sample
that contains the best values for sn(x), and performing clustering to determine starting
points for local minimization. Our implementation of Gutmann-RBF differs from the
original implementation by Gutmann (2001a), which used a tunneling method to find
the global minimum of the bumpiness function. In addition, our implementation of
CORS-RBF also differs from the original implementation by Regis and Shoemaker
(2005), which utilized the DIRECT algorithm (Jones et al. 1993) as implemented in
Tomlab (Holmström 1999) to solve the CORS-RBF auxiliary problem (see Sect. 3.2).
Note that the differences in how the global optimization subproblems are solved
should not be important as long as each method solves each subproblem thoroughly.

7 Results and discussion

Table 2 shows the results of applying the different RBF algorithms on the 16 test
problems. It records the average number of function evaluations required for an RBF
algorithm to get a relative error of <1% on a test problem. All trials for CG-RBF-
Restart and CORS-RBF-Restart were run until they got a relative error of <1%. All
trials for the other algorithms were only allowed to run for a maximum of 500 func-
tion evaluations. The reason for requiring CG-RBF-Restart and CORS-RBF-Restart
to run to near optimality in each trial is that, we want to perform a paired t-test to
compare the two methods later. In addition, we also recorded the standard errors of
the mean for the CG-RBF-Restart and CORS-RBF-Restart algorithms in order to
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provide some measure of variability in the results. The standard error of the mean is
simply the standard deviation divided by the square root of the number of trials. The
symbol > indicates that the average performance was computed with some runs being
stopped before getting a relative error of <1%. The number after > is the average
number of function evaluations to either get a relative error of <1% in less than 500
function evaluations or to terminate at exactly 500 function evaluations.

For convenience in the discussion below, we shall say that a trial is successful if it
resulted in a relative error of <1% within 500 function evaluations; otherwise, we shall
say that the trial is unsuccessful. The number inside the parenthesis in Table 2
represents the number of unsuccessful trials. In cases, where all trials are success-
ful, we also performed paired t-tests at the 0.05 significance level to compare the
performance of the different algorithms. The paired t-tests are essential for clari-
fying whether differences in performance actually exist by taking into account the
variability in the results.

7.1 Performance of standard RBF algorithms initialized by SLHDs

Columns 2 and 6 of Table 2 show the results of the standard implementations
of the two RBF methods (Gutmann-RBF and CORS-RBF) when initialized by
SLHDs of size (d + 1)(d + 2)/2, where d is the dimension of the problem. For
either Gutmann-RBF or CORS-RBF, there are many unsuccessful trials on the three
Shekel problems, on Hartman6 and on the Schoen functions with three steep local
minima.

Table 3 shows the original results for RBF methods obtained by Gutmann (2001a),
Björkman and Holmström (RBFsolve) (2000), and Regis and Shoemaker (CORS-
RBF) (2005) when using the corner points of the hypercube domain as the ini-
tial evaluation points. Gutmann (2001a) and Regis and Shoemaker (2005) used a
thin plate spline RBF model while Björkman and Holmström (2000) used a cubic
RBF model. Also, the results shown for Regis and Shoemaker (2005) used the same
search pattern as the one used in this investigation. These results are better than
the average results we obtained for Gutmann-RBF and CORS-RBF when using
SLHDs. However, as noted in Sect. 6.1, the use of corner points is only feasible for
low dimensional problems. Hence, it is important to determine how well RBF algo-
rithms perform when using other types of space-filling experimental designs such as
SLHDs.

Although the results shown in Table 3 are excellent, we should mention that
Björkman and Holmström (2000) and Gutmann (2001b) also obtained unsatisfactory
results when they experimented with different types of RBFs and various strategies for
setting the target values. In particular, for the Shekel test problems, there were many
combinations of RBF types and strategies where their RBF algorithm implementa-
tions did not get a relative error of < 1% after more than 150 function evaluations.
Björkman and Holmström (2000) used all 2d corner points of the hypercube domain
for the initial evaluation points while Gutmann (2001b) used only d + 1 corner points,
specifically the point corresponding to the lower bounds on the variables and the d
adjacent corners.

In the next two sections, we shall demonstrate that our proposed strategies will
substantially reduce the number of unsuccessful trials for Gutmann-RBF and CORS-
RBF on our test problems when they are initialized by SLHDs.
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Table 3 Number of function evaluations to get a relative error of <1% for RBF algorithms on the
Dixon–Szegö test problems

Test function Gutmann-RBF RBFsolve CORS-RBF

Branin 44 26 40
Goldstein-Price 63 27 64
Hartman3 43 22 61
Shekel5 76 96 52
Shekel7 76 72 64
Shekel10 51 76 64
Hartman6 112 87 104

7.2 Effect of the strategies on Gutmann-RBF

Columns 2–5 of Table 2 show that CG-RBF-Restart (Column 5) is the best mod-
ification of Gutmann-RBF on the test problems considered. The improvements of
CG-RBF-Restart (Column 5) over standard Gutmann-RBF (Column 2) are partic-
ularly remarkable on ten of the test problems, namely, the three Shekel functions,
the six Schoen functions with steep local minima (Schoen3X, Schoen3Y, Schoen4X,
Schoen4Y, Schoen5X, Schoen5Y), and Hartman6. For each of the six remaining test
problems, a paired t-test found that CG-RBF-Restart is at least as good or significantly
better than Gutmann-RBF.

We can examine the usefulness of just the restricted global minimization of the
bumpiness function by comparing CG-RBF to Gutmann-RBF in terms of average
performance or the number of unsuccessful trials in Columns 2 and 3 of Table 2. We
can see that CG-RBF is better than Gutmann-RBF on seven test problems: the three
Shekel functions, Schoen3, and the three Schoen functions with exactly one steep
local minimum (Schoen3X, Schoen4X, and Schoen5X). From Columns 2, 3, and 5, it
is worth noting that the improvements of CG-RBF-Restart over Gutmann-RBF on
these Schoen functions are only due to the CG-RBF strategy. These results indicate
that the restricted global minimization of the bumpiness function Bn(y) is helpful for
some problems with a steep global minimum. These results also confirm the failure
of local search in Gutmann-RBF for the Shekel functions and the Schoen functions
with one steep local minimum since better results are obtained when we force the
algorithm to perform local search when Wn is small. The performances of CG-RBF
and Gutmann-RBF are comparable on the nine remaining test problems. Hence, the
restricted global minimization of Bn(y) does not appear to hurt the performance of
Gutmann-RBF on most of the other test problems. For problems with a few steep
local minima, employing the restart strategy on top of the CG-RBF strategy yields
much better results.

Columns 2 and 4 of Table 2 indicate that the restart strategy alone does not appear
to be very effective in improving Gutmann-RBF on the test problems considered. The
restart strategy improves the performance of Gutmann-RBF on Shekel7, Shekel10,
Hartman6, and Schoen3Y but it also worsens the performance on Schoen5Y and
the three Schoen functions with one steep local minimum. The performances of Gut-
mann-RBF-Restart and Gutmann-RBF are the same or comparable on the remaining
test problems. However, from Columns 4 and 5 of Table 2, better results are obtained
when the CG-RBF strategy is combined with the restart strategy on the three Shekel
problems and the six Schoen problems with steep local minima.
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7.3 Effect of the restart strategy on CORS-RBF

Columns 6 and 7 of Table 2 indicate that CORS-RBF-Restart is better than CORS-
RBF on the three Shekel problems, Hartman6, Schoen4, and the Schoen test prob-
lems with three steep local minima (Schoen3Y, Schoen4Y, Schoen5Y). For each of the
eight remaining test problems, a paired t-test shows that the difference in performance
between CORS-RBF and CORS-RBF-Restart is not significant. Hence, these results
suggest that the restart strategy is helpful for CORS-RBF on problems with a few
steep local minima, one of which is the global minimum, and it does not appear to
hurt performance on the other test problems.

7.4 Comparison between CG-RBF-Restart and CORS-RBF-Restart

We also performed paired t-tests at the 0.05 significance level to compare the average
number of function evaluations to get within 1% of the optimal value for CG-RBF-
Restart and CORS-RBF-Restart. The results show that the two RBF algorithms are
comparable. In particular, although CORS-RBF-Restart is significantly better than
CG-RBF-Restart on Shekel10, Schoen3X, and Schoen5X, the opposite is true for
Schoen3 and Schoen5. Moreover, the difference in performance between the two
methods is not significant on the remaining test problems.

7.5 Sensitivity of the Performance of RBF Methods to the Restart Parameters

Before we proceed, we note that there are reasonable settings for the values of the
restart parameters. Given a small value for Cmax, a relatively large value of Imin

would be generally ineffective since very few improvements would be considered
substantial, resulting in frequent premature restarts. A large value of Cmax would
also be ineffective for some problems, since this would be almost the same as in the
standard implementations of the RBF methods.

The original settings of Imin = 0.5% and Cmax = 5 produced good results for CG-
RBF-Restart and CORS-RBF-Restart on the test problems as can be seen from Table
2. Now, we run CG-RBF-Restart and CORS-RBF-Restart using other values of the
restart parameters: (i) Imin = 0.5% and Cmax = 3; (ii) Imin = 0.1% and Cmax = 5;
and (iii) Imin = 0.1% and Cmax = 3. The results for CG-RBF-Restart and CORS-
RBF-Restart are shown in Tables 4 and 5, respectively. As before, we included the
standard errors of the mean to show some measure of variability in the results. Col-
umn 2 of Table 4 is the same as Column 5 of Table 2 while Column 2 of Table 5 is the
same as Column 7 of Table 2. We included these results from Table 2 to facilitate the
comparisons.

The results for CG-RBF-Restart in Table 4 are all much better than standard
Gutmann-RBF on ten of the test problems: the three Shekel problems, the six Schoen
functions with steep local minima, and Hartman6. Moreover, for the remaining prob-
lems except Schoen3, paired t-tests indicate that the differences in performance be-
tween CG-RBF-Restart and Gutmann-RBF are not statistically significant. Hence,
the CG-RBF-Restart algorithms with the new values of the restart parameters are
also generally better than standard Gutmann-RBF on the test problems.

Now we determine the effect of changing the restart parameters on the CG-RBF-
Restart algorithm. We begin with the original settings Imin = 0.5% and Cmax = 5
and consider the effect of decreasing Cmax from 5 to 3 while holding Imin = 0.5%
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Table 4 Average number of function evaluations to get a relative error of <1% for CG-RBF-Restart
with different sets of parameter values on 16 test problems

(1) (2) (3) (4) (5)
Test function CG-RBF-Restart CG-RBF-Restart CG-RBF-Restart CG-RBF-Restart

Imin = 0.5% Imin = 0.5% Imin = 0.1% Imin = 0.1%
Cmax = 5 Cmax = 3 Cmax = 5 Cmax = 3

Mean SE Mean SE Mean SE Mean SE

Branin 46.60 4.29 47.33 4.37 45.47 3.83 46.60 4.13
Goldstein-Price 61.60 5.07 74.30 7.80 60.33 4.77 66.47 5.22
Hartman3 63.17 7.51 66.30 7.92 63.17 7.51 63.43 7.67
Shekel5 259.77 (2) 33.97 306.27 (5) 41.11 253.30 (2) 32.35 257.13 (2) 31.44
Shekel7 156.23 16.90 192.30 (1) 27.98 169.80 (1) 19.46 164.27 (1) 17.63
Shekel10 169.33 18.97 181.20 17.16 167.10 (1) 21.65 175.57 (1) 20.43
Hartman6 214.47 (3) 39.82 162.27 21.69 287.90 (6) 62.68 211.37 (3) 36.22
Schoen3 42.57 1.99 43.50 2.56 42.57 1.99 42.57 1.99
Schoen3X 52.47 1.59 52.47 1.59 52.47 1.59 52.47 1.59
Schoen3Y 290.70 (4) 52.45 262.20 (4) 47.91 321.77 (4) 59.01 286.17 (4) 51.23
Schoen4 77.60 9.41 74.80 8.33 80.90 11.01 77.97 9.75
Schoen4X 81.83 2.06 89.33 5.55 81.83 2.06 81.83 2.06
Schoen4Y 149.17 19.98 153.03 (1) 21.46 157.60 (1) 22.91 148.40 (1) 20.29
Schoen5 60.60 0.87 60.60 0.87 60.60 0.87 60.60 0.87
Schoen5X 86.20 3.05 108.63 10.01 84.30 2.13 84.30 2.13
Schoen5Y 177.70 19.82 221.37 (2) 40.77 189.43 (1) 22.25 210.93 (1) 31.77

The number inside the parenthesis represents the number of trials, out of 30, that did not get a relative
error of <1% after 500 function evaluations

Table 5 Average number of function evaluations to get a relative error of <1% for CORS-RBF-
Restart with different sets of parameter values on 16 test problems

(1) (2) (3) (4) (5)
Test function CORS-RBF-Restart CORS-RBF-Restart CORS-RBF-Restart CORS-RBF-Restart

Imin = 0.5% Imin = 0.5% Imin = 0.1% Imin = 0.1%
Cmax = 5 Cmax = 3 Cmax = 5 Cmax = 3

Mean SE Mean SE Mean SE Mean SE

Branin 43.90 2.46 46.00 3.02 43.90 2.46 44.87 2.67
Goldstein-
Price 59.27 3.63 73.73 6.28 56.97 2.54 67.20 5.23
Hartman3 54.03 8.17 54.03 8.17 54.03 8.17 54.03 8.17
Shekel5 216.97 (2) 28.06 212.43 (2) 26.75 183.20 18.62 262.93 (2) 49.22
Shekel7 150.77 15.12 160.83 (1) 20.48 145.77 14.65 169.57 (1) 22.73
Shekel10 121.30 16.65 116.43 16.11 122.57 17.11 119.87 15.56
Hartman6 199.67 (2) 35.90 181.20 (2) 26.32 365.17 (5) 95.60 184.90 (2) 28.48
Schoen3 65.20 4.39 62.97 2.71 65.20 4.39 63.77 3.24
Schoen3X 46.60 1.64 46.60 1.64 46.60 1.64 46.60 1.64
Schoen3Y 296.50 (7) 48.22 196.43 22.26 436.03 (11) 68.05 269.63 (5) 46.92
Schoen4 92.53 11.86 111.47 13.06 90.23 12.31 93.30 10.62
Schoen4X 76.93 2.52 78.60 3.21 76.93 2.52 76.93 2.52
Schoen4Y 158.07 (2) 32.63 121.10 16.25 136.23 (1) 23.06 124.67 17.79
Schoen5 98.73 5.37 156.97 (1) 18.06 91.93 2.72 97.43 5.54
Schoen5X 72.00 1.60 72.00 1.60 72.00 1.60 72.00 1.60
Schoen5Y 196.97 (1) 25.68 174.10 (2) 24.64 228.40 (3) 35.71 190.80 (3) 27.36

The number inside the parenthesis represents the number of trials, out of 30, that did not get a relative
error of <1% after 500 function evaluations
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fixed. Although the results in Columns 2 and 3 of Table 4 seem to indicate con-
siderable changes in performance on several test problems, paired t-tests indicate
that statistically significant differences in performance are only present in Hartman6,
Schoen3Y and Schoen4, where the performance became significantly better, and
also in Schoen5X, where the performance became significantly worse. Next, when
we decrease Imin from 0.5% to 0.1% while holding Cmax = 5 fixed (see Columns 2
and 4 of Table 4), there are statistically significant deteriorations in performance on
Shekel7, Hartman6, and the Schoen problems with three steep local minima. Finally,
when we simultaneously decrease Imin from 0.5% to 0.1% and decrease Cmax from 5
to 3 (see Columns 2 and 5 of Table 4), there are no statistically significant changes
in performance in any of the test problems. Overall, CG-RBF-Restart is somewhat
sensitive to the restart parameters on some of the test problems.

The results for CORS-RBF-Restart in Table 5 are all much better than standard
CORS-RBF on seven of the test problems: the three Shekel problems, the three
Schoen functions with three steep local minima, and Hartman6. Moreover, for the
remaining problems, paired t-tests indicate that the differences in performance be-
tween CORS-RBF-Restart and CORS-RBF are not statistically significant except in a
few cases: Goldstein-Price when Cmax = 3 and Imin = 0.5% or 0.1%; and Schoen5 when
Cmax = 3 and Imin = 0.5%. Hence, the CORS-RBF-Restart algorithms with the new
values of the restart parameters are also generally better than standard CORS-RBF
on the test problems.

For CORS-RBF-Restart, changing the restart parameters did not result in statisti-
cally significant changes in performance except in a few cases. For example, decreasing
Cmax from 5 to 3 while holding Imin = 0.5% fixed resulted in a statistically significant
deterioration of performance on Goldstein-Price, Schoen4, and Schoen5 and it also
resulted in a statistically significant improvement on Schoen3Y. Also, decreasing Imin

from 0.5% to 0.1% while holding Cmax = 5 fixed resulted in a statistically significant
deterioration on Schoen3Y.

8 Summary and conclusions

We evaluated the performance of Gutmann-RBF and CORS-RBF when they are
initialized by SLHDs of size (d+1)(d+2)/2, where d is the dimension. We discovered
that for some difficult test problems a sizable number of runs (where each run corre-
sponds to a different SLHD) do not get within 1% of the global minimum value after
a large number of function evaluations. In addition, for the Shekel problems from the
Dixon and Szegö (1978) testbed, we observed slow convergence for Gutmann-RBF
even when its best solution already lies in the basin of the global minimum point. Our
computational experiments indicated that this was due to the failure of local search.
Moreover, using a simple one-dimensional function, we showed how local search can
fail in the standard implementation of Gutmann-RBF.

We proposed two strategies for dealing with the above problems. One strategy is
to restrict the global minimization of the bumpiness function Bn(y) in Gutmann-RBF
to a relatively small subregion centered at a global minimizer of the RBF model
whenever the weight parameter Wn is small, giving rise to the CG-RBF algorithm.
This promotes a better balance between local and global search in Gutmann-RBF. The
other strategy is to restart an RBF algorithm (either CG-RBF or CORS-RBF) com-
pletely from scratch whenever there is no substantial progress after some threshold
number of consecutive iterations.
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The computational results on the seven Dixon and Szegö (1978) test problems and
on nine Schoen (1993) test problems indicate that the proposed strategies resulted in
improved performance for Gutmann-RBF and CORS-RBF on many test problems
while maintaining the performance on the other problems. In particular, the com-
plete restart strategy was helpful for CORS-RBF while the combination of the CG-
RBF strategy and the complete restart strategy was helpful for Gutmann-RBF. The
paired t-tests also show that the modified RBF algorithms, namely CG-RBF-Restart
and CORS-RBF-Restart, are comparable on the test problems considered when the
restart parameters are set at Imin = 0.5% and Cmax = 5. Finally, CG-RBF-Restart and
CORS-RBF-Restart are also generally better than Gutmann-RBF and CORS-RBF,
respectively, when using other reasonable values of the restart parameters. However,
we also observed that these modified algorithms are somewhat sensitive to the two
restart parameters on some of the test problems.
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